Idiopathic intracranial hypertension is characterized by an increase in intracranial pressure with no significant structural cause. The diagnostic criteria include general signs and symptoms of generalized increased intracranial pressure or papilledema, increased Cerebrospinal Fluid (CSF) pressure (>250 mm H2O), no evidence of hydrocephalus, mass, or vascular lesion on Magnetic Resonance Imaging (MRI) or contrast-enhanced computerized tomography, and no other identified cause of intracranial hypertension [5].

Obesity is considered as a risk factor for IIH in all age groups, 43% of patients aged 3-11 years were obese [4].

The diagnostic criteria for IIH in adults include general signs and symptoms of generalized increased intracranial pressure or papilledema, increased Cerebrospinal Fluid (CSF) pressure (>250 mm H2O), no evidence of hydrocephalus, mass, structural, or vascular lesion on Magnetic Resonance Imaging (MRI) or contrast-enhanced computerized tomography, and no other identified cause of intracranial hypertension [5].

Introduction

Pediatric Idiopathic Intracranial Hypertension (IIH) is characterized by elevated intracranial pressure with no evidence of causes increasing intracranial pressure, such as infection, tumor, vascular cause, or hydrocephalus [1]. The incidence of pediatric IIH is around 0.5 per 100,000 children per year [2]. Regarding the incidence of pediatric IIH, there is an increase in its incidence among adolescents (12-15 years) compared with young children (2-12 years) [3]. Obesity is considered as a risk factor for IIH in all age groups, 43% of patients aged 3-11 years were obese [4].

1. [5] The diagnostic criteria for IIH in adults include general signs and symptoms of generalized increased intracranial pressure or papilledema, increased Cerebrospinal Fluid (CSF) pressure (>250 mm H2O), no evidence of hydrocephalus, mass, structural, or vascular lesion on Magnetic Resonance Imaging (MRI) or contrast-enhanced computerized tomography, and no other identified cause of intracranial hypertension [5].

2. [2] Obesity is considered as a risk factor for IIH in all age groups, 43% of patients aged 3-11 years were obese [4].

3. [3] The diagnostic criteria for IIH in adults include general signs and symptoms of generalized increased intracranial pressure or papilledema, increased Cerebrospinal Fluid (CSF) pressure (>250 mm H2O), no evidence of hydrocephalus, mass, structural, or vascular lesion on Magnetic Resonance Imaging (MRI) or contrast-enhanced computerized tomography, and no other identified cause of intracranial hypertension [5].
Addison's implants, desmopressin nasal spray, cytarabines, all transretinoic acid, diseases such as associated with recombinant (synthetic) growth hormone therapy, levonorgestrel abnormalities, drugs, and infections must be considered. IIH in children can be laboratory evidence of infection or space occupying lesion. Fulfill the criteria of IIH with no evidence of radiological or clinical manifestations or motor neuron features which is a false localizing sign with bilateral papilledema which the child presented by bilateral 6th nerve palsy in addition to left facial palsy with lower motor neuron features (Figure 1) in addition to bilateral abducens nerve palsy. Other neurological examination results included normal tone and reflexes with no irritative meningeal signs. Colored fundoscopy showed bilateral papilledema (Figure 2). Investigations showed normal Complete Blood Count (CBC), liver, renal function tests, and serum electrolytes. Brain MRI with contrast and Magnetic Resonance Venography (MRV) were normal.

CSF aspiration was considered after brain MRI. CSF pressure was more than 40 cm H₂O. Clear aspect of CSF is an item of CSF analysis to exclude CNS infection as a cause of increase intracranial tension. Glucose level was 16 mg/dl and protein level was 10 mg/dl with 2 White Blood Cells (WBCs). Measles IgM was positive and IgG was negative due to recent vaccination. IgM and IgG in the CSF of measles were not evaluated. Diagnosis of IIH was made based on clinical and laboratory findings. Then, 15 cc of CSF was aspirated from the child who showed dramatic improvement of severe headache. After three days, the same amount was aspirated. Acetazolamide (25 mg/kg per day) and oral potassium intake was started from the first day.

One week later, the child showed partial improvement in left facial palsy and bilateral sixth nerve palsy. One and half months later and on medical treatment, both sixth and facial nerves palsy were completely resolved with no headache. Follow-up of fundus examination after two months showed resolution of papilledema.

Discussion

IIH can occur at any age, but it is very rare to occur in children [8]. In this case, the child presented by bilateral sixth nerve palsy in addition to left facial palsy with the measles vaccine according to the mass campaign of the Ministry of Health in Egypt.

By examination, the child was irritable due to severe headaches and his vital signs were stable. Cranial nerve examination showed left facial muscles weakness with lower motor neuron features (Figure 1) in addition to bilateral abducens nerve palsy. Other neurological examination results included normal tone and reflexes with no irritative meningeal signs. Colored fundoscopy showed bilateral papilledema (Figure 2). Investigations showed normal Complete Blood Count (CBC), liver, renal function tests, and serum electrolytes. Brain MRI with contrast and Magnetic Resonance Venography (MRV) were normal.

CSF aspiration was considered after brain MRI. CSF pressure was more than 40 cm H₂O. Clear aspect of CSF is an item of CSF analysis to exclude CNS infection as a cause of increase intracranial tension. Glucose level was 16 mg/dl and protein level was 10 mg/dl with 2 White Blood Cells (WBCs). Measles IgM was positive and IgG was negative due to recent vaccination. IgM and IgG in the CSF of measles were not evaluated. Diagnosis of IIH was made based on clinical and laboratory findings. Then, 15 cc of CSF was aspirated from the child who showed dramatic improvement of severe headache. After three days, the same amount was aspirated. Acetazolamide (25 mg/kg per day) and oral potassium intake was started from the first day.

One week later, the child showed partial improvement in left facial palsy and bilateral sixth nerve palsy. One and half months later and on medical treatment, both sixth and facial nerves palsy were completely resolved with no headache. Follow-up of fundus examination after two months showed resolution of papilledema.
lower motor neuron features, which is a false localizing sign with bilateral papilledema that fulfills the criteria of IIH with no evidence of radiological or clinical manifestations or laboratory evidence of infection or space-occupying lesion.

Obesity is an important risk factor of IIH, but other causes, such as endocrine abnormalities, effect of some drugs, and infections must be considered. IIH in children can be associated with recombinant (synthetic) growth hormone therapy, levonorgestrel implants, desmopressin nasal spray, cytarabine, All-Trans Retinoic Acid (ATRA) syndrome, such as Addison’s disease, acute sinusitis, varicella, and Miller Fisher syndrome [7]. None of these cases were found in our case. Papilledema and sixth nerve palsy are described in the symptomatology of IIH [9] in addition to facial nerve palsy, which is observed in many cases with IIH [10].

Few cases have been reported with an association between measles vaccination and increased intracranial pressure. For example, a 10-month old male infant in India presented with sudden onset of medial deviation of eyes and irritability, papilledema, normal MRI, and elevated CSF pressure with recent measles vaccination [11]. Another 8-year-old girl with measles was found with a manifestation of increased intracranial tension, papilledema, normal MRI, and elevated CSF pressure [12]. In both cases, no known cause suggestive of IIH was observed; thus, measles can be regarded as the risk factor.

There is no report on cases with IIH associated with measles vaccination, except for the Indian infant who is similar to our case; thus, measles vaccination may be related to IIH; however, it cannot be considered as an etiology based on two cases only.

We considered therapeutic tapping in our case, which resulted in a dramatic improvement in neurological manifestations, such as headache, bilateral sixth nerve palsy, and facial nerve palsy, and the same case has been reported in the Indian infant with marked improvement in neonate irritability and sixth nerve palsy [12]. Also, medical treatment using acetazolamide was continued for three months after the insult and showed marked improvement in papilledema in the follow-up. Pediatric patients with IIH have a relatively favorable prognosis, with prompt diagnosis and treatment [12].

In conclusion, in any child presented with a manifestation of increased intracranial pressure, sixth nerve palsy, and elevated CSF pressure, and normal MRI, IIH must be suspected in addition to considering the association between recent measles vaccination and IIH.

Ethical Considerations

Compliance with ethical guidelines

All ethical principles are considered in this article. The participant was informed of the purpose of the research and its implementation stages. He was also assured about the confidentiality of their information and were free to leave the study whenever they wished, and if desired, the research results would be available to them. A written consent has been obtained from the subjects. Principles of the Helsinki Convention was also observed.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Conflict of interest

The authors declared no conflict of interest.

References

